Pseudomonas putida: An Environment Friendly Bacterium 143

Santos, C. N. S. and G. Stephanopoulos. 2008. Combinatorial engineering of microbes for optimizing cellular

phenotype. Curr. Opin. Chem. Biol. 12(2): 168–176.

Sauer, U. 2001. Evolutionary engineering of industrially important microbial phenotypes. Metab. Eng. 73: 129–169.

Schettgen, T., U. Heudorf, H. Drexler and J. Angerer. 2002. Pyrethroid exposure of the general population-is this due

to diet. Toxicol. Lett. 134(1-3): 141–145.

Schmack, G., V. Gorenflo and A. Steinbüchel. 1998. Biotechnological production and characterization of polyesters

containing 4-hydroxyvaleric acid and medium-chain-length hydroxyalkanoic acids. Macromolecules. 31(3):

644–649.

Serdar, C. M., D. C. Murdock and M. F. Rohde. 1989. Parathion hydrolase gene from Pseudomonas diminuta MG:

Subcloning, complete nucleotide sequence, and expression of the mature portion of the enzyme in Escherichia

coli. Nat. Biotechnol. 7(11): 1151–1155.

Sharma, B. and P. Shukla. 2022. Futuristic avenues of metabolic engineering techniques in bioremediation. Biotechnol.

Appl. Biochem. 69(1): 51–60.

Shelton, D. R. and C. J. Somich. 1988. Isolation and characterization of coumaphos-metabolizing bacteria from cattle

dip. Appl. Environ. Microbiol. 54(10): 2566–2571.

Shen, Y. J., P. Lu, H. Mei, H. J. Yu, Q. Hong and S. P. Li. 2010. Isolation of a methyl parathion-degrading strain

Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegrad. 21(5): 785–792.

Silambarasan, S., P. Logeswari, A. Ruiz, P. Cornejo and V. R. Kannan. 2020. Influence of plant beneficial

Stenotrophomonas rhizophila strain CASB3 on the degradation of diuron-contaminated saline soil and

improvement of Lactuca sativa growth. Environ. Sci. Pollut. Res. Int. 27(28): 35195–35207.

Simon, O., I. Klaiber, A. Huber and J. Pfannstiel. 2014. Comprehensive proteome analysis of the response of

Pseudomonas putida KT2440 to the flavor compound vanillin. J. Proteomics. 109: 212–227.

Singh, P. K. 1973. Effect of pesticides on blue-green algae. Arch. Mikrobiol. 89(4): 317–320.

Singleton, D. R., L. Guzmán-Ramirez and M. D. Aitken. 2009. Characterization of a polycyclic aromatic hydrocarbon

degradation gene cluster in a phenanthrene-degrading Acidovorax strain. Appl. Environ. Microbiol. 75(9):

2613–2620.

Song, F., Y. Shi, S. Jia, Z. Tan and H. Zhao. 2018. Advances of naphthalene degradation in Pseudomonas putida ND6.

Front. Bioeng. Biotechnol. 944(1): 20074.

Soni, M. G., S. L. Taylor, N. A. Greenberg and G. A. Burdock. 2002. Evaluation of the health aspects of methyl

paraben: a review of the published literature. Food Chem. Toxicol. 40(10): 1335–1373.

Stark, B. C., K. R. Pagilla and K. L. Dikshit. 2015. Recent applications of Vitreoscilla hemoglobin technology in

bioproduct synthesis and bioremediation. Appl. Microbiol. Biotechnol. 99(4): 1627–1636.

Steinbüchel, A. and S. Hein. 2001. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates

in microorganisms. Adv. Biochem. Eng. Biotechnol. 71: 81–123.

Tang, J., B. Liu, T. T. Chen, K. Yao, L. Zeng, C. Y. Zeng and Q. Zhang. 2018. Screening of a beta-cypermethrin­

degrading bacterial strain Brevibacillus parabrevis BCP-09 and its biochemical degradation pathway.

Biodegrad. 29(6): 525–541.

Tiso, T., P. Sabelhaus, B. Behrens, A. Wittgens, F. Rosenau, H. Hayen and L. M. Blank. 2016. Creating metabolic

demand as an engineering strategy in Pseudomonas putida–Rhamnolipid synthesis as an example. Adv.

Energy Sci. Environ. Eng. 3: 234–244.

Tomasek, P. H. and J. S. Karns. 1989. Cloning of a carbofuran hydrolase gene from Achromobacter sp. strain WM111

and its expression in gram-negative bacteria. J. Bacteriol. 171(7): 4038–4044.

Tran, N. H., T. Urase, H. H. Ngo, J. Hu and S. L. Ong. 2013. Insight into metabolic and cometabolic activities of

autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants.

Bioresour. Technol. 146: 721–731.

Turnbull, G. A., J. E. Cullington, A. Walker and J. Morgan. 2001. Identification and characterisation of a diuron­

degrading bacterium. Biol. Fertil. Soils. 33: 472–476.

Unger, B. P., I. C. Gunsalus and S. G. Sligar. 1986. Nucleotide sequence of the Pseudomonas putida cytochrome

P-450cam gene and its expression in Escherichia coli. J. Biol. Chem. 261(3): 1158–1163.

Vague, M., G. Chan, C. Roberts, N. A. Swartz and J. L. Mellies. 2019. Pseudomonas isolates degrade and form

biofilms on polyethylene terephthalate (PET) plastic. bioRxiv. p: 647321.

van Hylckama Vlieg, J. E., L. Tang, J. H. LutjeSpelberg, T. Smilda, G. J. Poelarends, T. Bosma, A. E. van Merode, M.

W. Fraaije and D. B. Janssen. 2001. Halohydrin dehalogenases are structurally and mechanistically related to

short-chain dehydrogenases/reductases. J. Bacteriol. 183(17): 5058–5066.

Verma, A., K. Dhiman and P. Shirkot. 2016. Hyper-production of laccase by Pseudomonas putida LUA15. 1 through

mutagenesis. J. Microbiol. Exp. 3(1): 00080.